Subscribe to Read

Sign up today to enjoy a complimentary trial and begin exploring the world of books! You have the freedom to cancel at your convenience.

Pandas for Everyone: Python Data Analysis


Title Pandas for Everyone: Python Data Analysis
Writer Daniel Y. Chen
Date 2025-07-03 17:43:24
Type pdf epub mobi doc fb2 audiobook kindle djvu ibooks
Link Listen Read

Desciption

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem.


Review

I read this after reading "Python for Data Analysis" by Wes McKinney (creator of Pandas). This book actually made what I was reading from Wes stick. The examples here are more what you would encounter in a business setting doing analysis on large volume data sets. I have loaned this around the office with positive feedback as well. Best chapters for me were on the Generalized Linear Models and Model Diagnostics. Again, plenty of really useful examples.

Latest books